| 注册
首页|期刊导航|自动化学报|一种基于超像素的肿瘤自动攻击交互式分割算法

一种基于超像素的肿瘤自动攻击交互式分割算法

产思贤 周小龙 张卓 陈胜勇

自动化学报2017,Vol.43Issue(10):1829-1840,12.
自动化学报2017,Vol.43Issue(10):1829-1840,12.DOI:10.16383/j.aas.2017.e160186

一种基于超像素的肿瘤自动攻击交互式分割算法

Interactive Multi-label Image Segmentation With Multi-layer Tumors Automata

产思贤 1周小龙 1张卓 1陈胜勇1

作者信息

  • 折叠

摘要

Abstract

Interactive segmentation is useful for selecting object of interest in an image and it continues to be a popular topic.It plays an increasingly important role in image processing and has a wide range of applications.However,performing interactive segmentation pixel by pixel is normally time consuming.This paper presents a new method to improve the segmentation efficiency.The proposed method improves the growcut algorithm by utilizing the super-pixel-level tumors automata (TA),since the super-pixels can supply powerful boundary clues to guide segmentation and can be gathered easily by over-segmentation algorithm.The TA has the similar principle as cellular automata.Given a small number of user-tagged super-pixels,the rest of the image can be automatically segmented by TA.Due to the iterative strategy,user can observe that the processing is faster than the growcut.To obtain the best result,both level set and multi-layer TA approaches are applied.Experiments carried out on the VOC challenge segmentation dataset show that the proposed method achieves state-of-the-art performance.

关键词

Growcut/interactive segmentation/Super-pixel/tumors automata (TA)

Key words

Growcut/interactive segmentation/Super-pixel/tumors automata (TA)

引用本文复制引用

产思贤,周小龙,张卓,陈胜勇..一种基于超像素的肿瘤自动攻击交互式分割算法[J].自动化学报,2017,43(10):1829-1840,12.

基金项目

This work was supported in part by the National Natural Science Foundation of China (61403342,61273286,U1509207,61325019,11302195),and Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering(2014KLA09). (61403342,61273286,U1509207,61325019,11302195)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文