中山大学学报(自然科学版)2017,Vol.56Issue(5):30-33,4.DOI:10.13471/j.cnki.acta.snus.2017.05.004
关于三次Diophantine方程x3+1=2p1p2Qy2的可解性
On the solvability of the cubic Diophantine equation x3 + 1 =2p1p2Qy2
摘要
Abstract
Letp1,p2 be odd primes satisfy p1 ≡p2 ≡ 1(mod6)and (p1-p2)=-1,where (p1/p2) is the Legendre symbol.Let Q be a positive integer such that Q is square free,and it has at least two distinct prime divisors and every prime divisor q of Q satisfies q ≡ 5 (mod 6).Using some elementary number theory methods,it is proven that ifp1 ≡ 1 (mod 8),p2 ≡ 5 (mod 8) and Q ≡ 1 (mod 4),then the equation x3 + 1 =2p1p2Qy2 has no positive integer solutions (x,y).关键词
三次Diophantine方程/正整数解/同余条件Key words
cubic Diophantine equation/positive integer solution/congruence condition分类
数学引用本文复制引用
杨海,候静,付瑞琴..关于三次Diophantine方程x3+1=2p1p2Qy2的可解性[J].中山大学学报(自然科学版),2017,56(5):30-33,4.基金项目
国家自然科学基金(11226038,11371012) (11226038,11371012)
陕西省自然科学基金(2017JM1025) (2017JM1025)
陕西省教育厅科研计划项目(17JK0323) (17JK0323)
西安石油大学博士科研项目(2015BS06) (2015BS06)