| 注册
首页|期刊导航|计算机工程与应用|反向自适应高斯变异的人工鱼群算法

反向自适应高斯变异的人工鱼群算法

姚凌波 戴月明 王艳

计算机工程与应用2018,Vol.54Issue(1):179-185,7.
计算机工程与应用2018,Vol.54Issue(1):179-185,7.DOI:10.3778/j.issn.1002-8331.1607-0192

反向自适应高斯变异的人工鱼群算法

Opposite adaptive and Gauss mutation artificial fish swarm algorithm

姚凌波 1戴月明 1王艳1

作者信息

  • 1. 江南大学物联网工程学院,江苏无锡214122
  • 折叠

摘要

Abstract

The Artificial Fish Swarm Algorithm(CAFSA)has some disadvantages such as falling into local optimum, poor robustness and low search accuracy. To solve these problems, this paper proposes an opposite adaptive and Gauss mutation artificial fish swarm algorithm. To provide more opportunities to explore potential better area, the algorithm applies opposite point to adjust direction and location of artificial fish. Thereby, the algorithm can jump out of local optimum fast and improve better global searching ability. In addition, this algorithm balances the global and local searching ability by using a non-linear function to adjust artificial fish's visual and step. Otherwise, in order to solve early-maturing of artificial fish, using Gauss mutation mechanism based on optimal solution increases the diversity of every artificial fish. The simulation results show that improved artificial fish swarm algorithm has good searching quality, better accuracy and robustness. Meanwhile, the algorithm avoids early-maturing compared with other AFSAs.

关键词

人工鱼群算法/自适应/高斯变异/反向解

Key words

Artificial Fish Swarm Algorithm(AFSA)/adaptive/Gauss Mutation(GM)/opposite point

分类

信息技术与安全科学

引用本文复制引用

姚凌波,戴月明,王艳..反向自适应高斯变异的人工鱼群算法[J].计算机工程与应用,2018,54(1):179-185,7.

基金项目

国家高技术研究发展计划(863)(No.2014AA041505) (863)

国家自然科学基金(No.61572238). (No.61572238)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文