| 注册
首页|期刊导航|计算机与数字工程|基于样本间最小欧氏距离的多特征融合识别算法研究

基于样本间最小欧氏距离的多特征融合识别算法研究

刘如松

计算机与数字工程2017,Vol.45Issue(12):2373-2378,6.
计算机与数字工程2017,Vol.45Issue(12):2373-2378,6.DOI:10.3969/j.issn.1672-9722.2017.12.011

基于样本间最小欧氏距离的多特征融合识别算法研究

Research on Multi-feature Fusion Recognition Algorithm Based on Minimum Euclidean Distance Between Samples

刘如松1

作者信息

  • 1. 中国航空工业集团公司西安航空计算技术研究所 西安 710068
  • 折叠

摘要

Abstract

In the process of the target tracking,to improve the accuracy and real-time performance of target image recognition, this paper proposes a multi-feature fusion recognition method based on DS evidence theory and minimum Euclidean distance be?tween samples(E-DS).By image preprocessing and Sobel edge detection to target image,two types of visual features such as the tar?get color and geometry are extracted and normalized to form the target image feature vector;according to DS fusion theory,the mini?mum Euclidean distances between single samples are calculated and the results are used as evidences to construct the basic proba?bility assignment function,combined with DS combination rule,the final recognition results are given.The multi-feature E-DS fu?sion recognition method is applied to the target recognition test,the calculation results show that the average correct recognition rate of E-DS method reaches 95.49%,the highest recognition rate is 97.16%,and the variance of recognition rate between groups is mini?mum,which verifies the applicability of E-DS method.

关键词

多特征融合识别/最小欧氏距离/DS证据融合理论

Key words

multi-feature fusion recognition/minimum Euclidean distance/DS evidence fusion theory

分类

信息技术与安全科学

引用本文复制引用

刘如松..基于样本间最小欧氏距离的多特征融合识别算法研究[J].计算机与数字工程,2017,45(12):2373-2378,6.

基金项目

国家自然科学基金项目(编号:61575155)资助. (编号:61575155)

计算机与数字工程

OACSTPCD

1672-9722

访问量1
|
下载量0
段落导航相关论文