| 注册
首页|期刊导航|计算机与数字工程|基于流形学习的SAR图像目标分类

基于流形学习的SAR图像目标分类

彭易锦

计算机与数字工程2017,Vol.45Issue(12):2489-2493,2529,6.
计算机与数字工程2017,Vol.45Issue(12):2489-2493,2529,6.DOI:10.3969/j.issn.1672-9722.2017.12.035

基于流形学习的SAR图像目标分类

Manifold Learning-based SAR Image Target Classification

彭易锦1

作者信息

  • 1. 中国电子科技集团公司第十研究所 成都 610036
  • 折叠

摘要

Abstract

A manifold learning-based approach is proposed for dimension reduction and target classification of SAR image. This approach includes three steps:1)Extracting high-dimensional feature vector of SAR image target;2)Manifold learn?ing-based innate character extracting from the high-dimensional feature vector;3)Target classification using the innate character. The experimental result indicates that the proposed approach obtain relatively high accuracy of target classification in the case of us?ing low-dimensional feature compared to the high-dimensional feature vector,which proves the effectiveness of the proposed ap?proach.

关键词

流形学习/目标分类/SAR图像/特征提取

Key words

manifold learning/target classification/SAR image/feature extraction

分类

信息技术与安全科学

引用本文复制引用

彭易锦..基于流形学习的SAR图像目标分类[J].计算机与数字工程,2017,45(12):2489-2493,2529,6.

基金项目

国家自然科学基金项目(编号:61501178)资助. (编号:61501178)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文