| 注册
首页|期刊导航|计算机应用研究|面向主动学习的模糊核聚类采样算法

面向主动学习的模糊核聚类采样算法

王勇臻 陈燕 张金松

计算机应用研究2017,Vol.34Issue(12):3564-3568,5.
计算机应用研究2017,Vol.34Issue(12):3564-3568,5.DOI:10.3969/j.issn.1001-3695.2017.12.010

面向主动学习的模糊核聚类采样算法

Sampling algorithm using kernel-based fuzzy clustering for active learning

王勇臻 1陈燕 1张金松1

作者信息

  • 1. 大连海事大学交通运输管理学院,辽宁大连116026
  • 折叠

摘要

Abstract

Since it is difficult to select representative samples for active learning when constructing the initial classifier,this paper proposed a sampling algorithm using kernel-based fuzzy clustering.This algorithm began with dividing the sample set via clustering analysis technology,then it extracted samples from regions near the center and the boundary of clusters respectively and labeled them.And in the final phase it constructed the initial classifier using these labeled samples.In this algorithm,it transformed the point in the original sample space into a high dimensional feature space by Gaussian kernel function with the aim of linear clustering,and it introduced an initial cluster center selection method based on local density to improve its cluster performance.In order to ameliorate its sampling quality,this paper designed a sampling proportion allocation strategy utilizing the number of samples of divided each cluster.At the end of sampling,it used a fallback sampling strategy to ensure that the number of samples was up to the standard.The experimental results have demonstrated that the proposed algorithm can effectively reduce the cost of labeling samples when constructing the initial classifier,and get a higher classification accuracy.

关键词

高斯核函数/聚类分析/采样/主动学习/分类

Key words

Gaussian kernel function/clustering analysis/sampling/active learning/classification

分类

信息技术与安全科学

引用本文复制引用

王勇臻,陈燕,张金松..面向主动学习的模糊核聚类采样算法[J].计算机应用研究,2017,34(12):3564-3568,5.

基金项目

国家自然科学基金资助项目(71271034) (71271034)

辽宁省自然科学基金资助项目(2014025015) (2014025015)

青年骨干教师基金资助项目(3132016045) (3132016045)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量1
|
下载量0
段落导航相关论文