| 注册
首页|期刊导航|计算机应用研究|CNN与决策树结合的新型人体行为识别方法研究

CNN与决策树结合的新型人体行为识别方法研究

王忠民 张琮 衡霞

计算机应用研究2017,Vol.34Issue(12):3569-3572,4.
计算机应用研究2017,Vol.34Issue(12):3569-3572,4.DOI:10.3969/j.issn.1001-3695.2017.12.011

CNN与决策树结合的新型人体行为识别方法研究

Research on new human behavior recognition method based on CNN and decision tree

王忠民 1张琮 1衡霞1

作者信息

  • 1. 西安邮电大学计算机学院,西安710061
  • 折叠

摘要

Abstract

The utilization of smart phone'acceleration sensors to identify human behavior is a big topic in intelligence field.Traditional identification methods,such as Bayes,speed learning and decision tree,must first collected acquisition frequency domain features of acceleration sensor data and extracted preferred features.This paper utilized convolutional neural network algorithm to extract smart phone'accelerate data in three dimensions,and then automatically found out patterns from the data.Finally it used decision tree to identify human behavior from the pattern.Experimental results show that recognition accuracy improves 1.1% to 5.2% in comparison with traditional machine learning methods,especially data set on the large-scale.

关键词

行为识别/深度学习/卷积神经网络/决策树/特征提取

Key words

behavior recognition/deep learning/convolutional neural network (CNN)/decision tree/feature extraction

分类

信息技术与安全科学

引用本文复制引用

王忠民,张琮,衡霞..CNN与决策树结合的新型人体行为识别方法研究[J].计算机应用研究,2017,34(12):3569-3572,4.

基金项目

国家自然科学基金资助项目(61373116) (61373116)

陕西省科技统筹创新工程计划项目(2016KTZDGY04-01) (2016KTZDGY04-01)

陕西省教育厅专项科研计划资助项目(16JK1706) (16JK1706)

西安市科技局科技计划项目(2017084CG/RC047(XAYD001) (2017084CG/RC047(XAYD001)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量3
|
下载量0
段落导航相关论文