| 注册
首页|期刊导航|计算机应用研究|基于自适应步长的萤火虫划分聚类算法

基于自适应步长的萤火虫划分聚类算法

潘晓英 陈雪静 李昂儒 赵普

计算机应用研究2017,Vol.34Issue(12):3576-3579,3602,5.
计算机应用研究2017,Vol.34Issue(12):3576-3579,3602,5.DOI:10.3969/j.issn.1001-3695.2017.12.013

基于自适应步长的萤火虫划分聚类算法

Firefly partition clustering algorithm based on self-adaptive step

潘晓英 1陈雪静 1李昂儒 1赵普1

作者信息

  • 1. 西安邮电大学计算机学院,西安710061
  • 折叠

摘要

Abstract

In many areas,clustering is one of the most important techniques,including data mining,pattern recognition and image analysis.Due to K-means algorithm is easy to fall into the local optimum by the selection of initial clustering center,this paper proposed an improved algorithm based on the combination of firefly algorithm and K-means algorithm,which was called ASFA.By using random and global search of firefly algorithm,it initialized the original cluster centers,which could be further used to obtain more accurate clustering of K-means.In the clustering optimization algorithm,it utilized adaptive step size instead of the original fixed step size to avoid local optimization of the algorithm and obtained higher accuracy.In order to improve performance,it implemented the new algorithm in benchmark datasets of different size.The experimental results show that ASFA has better clustering performance,robustness and stability.In addition,compared with other algorithms in the literature,ASFA achieves better effect in accuracy optimization aspect.

关键词

萤火虫算法/K-means算法/初始聚类中心/自适应步长/鲁棒性

Key words

firefly algorithm (FA)/K-means algorithm/initial clustering center/self-adaptive step length/robustness

分类

信息技术与安全科学

引用本文复制引用

潘晓英,陈雪静,李昂儒,赵普..基于自适应步长的萤火虫划分聚类算法[J].计算机应用研究,2017,34(12):3576-3579,3602,5.

基金项目

国家自然科学基金资助项目(61105064,61203311) (61105064,61203311)

陕西省教育厅专项科研计划项目(14JK1665) (14JK1665)

厦门市科技计划项目(3502Z20141164) (3502Z20141164)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文