| 注册
首页|期刊导航|计算机应用研究|基于距离收敛量和历史信息密度的多目标进化算法

基于距离收敛量和历史信息密度的多目标进化算法

李潇涵 刘博 张友

计算机应用研究2017,Vol.34Issue(12):3580-3584,5.
计算机应用研究2017,Vol.34Issue(12):3580-3584,5.DOI:10.3969/j.issn.1001-3695.2017.12.014

基于距离收敛量和历史信息密度的多目标进化算法

Distance convergence and history density based multi-objective evolutionary algorithm

李潇涵 1刘博 1张友1

作者信息

  • 1. 东北师范大学计算机科学与信息技术学院,长春130024
  • 折叠

摘要

Abstract

Most multi-objective evolutionary algorithms used Pareto dominant criterion and density criterion to select individuals from generation to generation.However,as the Pareto criterions failed to discriminate the convergence and diversity degrees of individuals when the individuals were Pareto-optimal solutions.To address this issue,this paper proposed a distance convergence and history density based multi-objective evolutionary algorithm.It defined the distance convergence criterion to distinguish Pareto-optimal individuals,and presented the history density criterion to obtain a more accurate density estimation.The experimental results show that this algorithm performs competitively with respect to chosen state-of-the-art designs.

关键词

多目标进化算法/距离收敛量/历史信息密度/配对选择

Key words

multi-objective evolutionary algorithm/distance convergence/history density/mating selection

分类

信息技术与安全科学

引用本文复制引用

李潇涵,刘博,张友..基于距离收敛量和历史信息密度的多目标进化算法[J].计算机应用研究,2017,34(12):3580-3584,5.

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文