| 注册
首页|期刊导航|计算机应用研究|基于灰狼算法的改进研究

基于灰狼算法的改进研究

郭振洲 刘然 拱长青 赵亮

计算机应用研究2017,Vol.34Issue(12):3603-3606,3610,5.
计算机应用研究2017,Vol.34Issue(12):3603-3606,3610,5.DOI:10.3969/j.issn.1001-3695.2017.12.019

基于灰狼算法的改进研究

Study on improvement of gray wolf algorithm

郭振洲 1刘然 1拱长青 1赵亮1

作者信息

  • 1. 沈阳航空航天大学计算机学院,沈阳110136
  • 折叠

摘要

Abstract

According to gray wolf algorithm is easily trapped in local optimum and the convergence rate is not ideal,based on the improved convergence factor strategy and dynamic weighting strategy and two mixed strategies,this paper improved the wolf optimization algorithm and used to solve the function optimization problem.This paper proposed a nonlinear convergent factor formula,which could dynamically adjust the global searching ability of the algorithm,and introduced the dynamic weight to accelerate the convergence rate of the algorithm.15 benchmark test functions verified the global search ability and local search ability and convergence speed of the improved algorithm.The experimental results show that the improved algorithm is bettter than the standard wolf algorithm in terms of search ability and convergence rate.

关键词

灰狼算法/收敛因子/动态权重/收敛速度

Key words

gray wolf optimization(GWO) algorithm/convergence factor/dynamic weight/convergence rate

分类

信息技术与安全科学

引用本文复制引用

郭振洲,刘然,拱长青,赵亮..基于灰狼算法的改进研究[J].计算机应用研究,2017,34(12):3603-3606,3610,5.

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文