| 注册
首页|期刊导航|计算机应用研究|两种改进的模拟退火算法求解大值域约束满足问题

两种改进的模拟退火算法求解大值域约束满足问题

原志强 赵春艳

计算机应用研究2017,Vol.34Issue(12):3611-3616,6.
计算机应用研究2017,Vol.34Issue(12):3611-3616,6.DOI:10.3969/j.issn.1001-3695.2017.12.021

两种改进的模拟退火算法求解大值域约束满足问题

Two improved simulated annealing algorithms for solving constraint satisfaction problems with large domains

原志强 1赵春艳1

作者信息

  • 1. 上海理工大学理学院,上海200093
  • 折叠

摘要

Abstract

Phase transitions and solving algorithms of random constraint satisfaction problems have attracted special attention in the research of NP-complete problems.Model RB is a nontrivial random constraint satisfaction problem.Precisely speaking,model RB is a random CSP with exact satisfiability phase transition,and it is quite easy to generate hard instances.This paper proposed two improved simulated annealing algorithms (i.e.RSA and GSA) to solve the random instances of model RB with large domains.Numerical experiment results show that RSA and GSA algorithms can efficiently find solutions of the instances generated by model RB in the threshold region,and the two algorithms perform much better than random walk algorithm.Unfortunately,the algorithms fail to find solutions in the region that is very close to the satisfiability threshold.However,the optimal solution finally obtained only makes few of the constraints not be satisfied.

关键词

约束满足问题/RB模型/模拟退火算法/遗传算法

Key words

constraint satisfaction problems(CSP)/model RB/simulated annealing algorithm/genetic algorithm

分类

信息技术与安全科学

引用本文复制引用

原志强,赵春艳..两种改进的模拟退火算法求解大值域约束满足问题[J].计算机应用研究,2017,34(12):3611-3616,6.

基金项目

国家自然科学基金资助项目(11301339,11491240108,11471215) (11301339,11491240108,11471215)

上海高校青年教师培养计划资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文