| 注册
首页|期刊导航|交通运输工程与信息学报|基于改进蚁群和免疫算法融合的多配送中心路径优化

基于改进蚁群和免疫算法融合的多配送中心路径优化

李进龙 刘红星 谢文杰 罗霞

交通运输工程与信息学报2017,Vol.15Issue(4):87-94,8.
交通运输工程与信息学报2017,Vol.15Issue(4):87-94,8.DOI:10.3969/j.issn.1672-4747.2017.04.013

基于改进蚁群和免疫算法融合的多配送中心路径优化

Multi - Distribution Center Path Optimization Based on Improved Ant Colony and Immune Algorithm Fusion

李进龙 1刘红星 2谢文杰 3罗霞1

作者信息

  • 1. 西南交通大学,交通运输与物流学院,成都610031
  • 2. 西南交通大学,综合交通运输智能化国家地方联合工程实验室,成都610031
  • 3. 西南交通大学,电气工程学院,成都610031
  • 折叠

摘要

Abstract

With the rapid development of logistics industry, the demand for freight transportation and warehousing is also increasing. During the design phase of a logistics network, the vehicle routing problem and distribution center location problems are inter-related and need to be considered at the same time. This paper develops an integrated meta-heuristic-based framework to simultaneously solve these two problems. In the first stage, the taboo search of ant colony algorithm is improved and the immune algorithm is integrated; at the second stage, the immune-ant colony algorithm is designed to capture the inter-relationship between the vehicle routing problem and distribution center location problem. A numerical example is then provided to verify the proposed method. The results show that compared with the traditional immune location-ant colony optimization algorithm, the overall method can save 49.5% of the total cost.

关键词

物流工程/路径优化/算法融合/配送中心/蚁群算法/免疫算法

Key words

logistics engineering/path optimization/algorithm fusion/distribution center location/ant colony algorithm/immune algorithm

分类

交通工程

引用本文复制引用

李进龙,刘红星,谢文杰,罗霞..基于改进蚁群和免疫算法融合的多配送中心路径优化[J].交通运输工程与信息学报,2017,15(4):87-94,8.

基金项目

中央高校基本科研业务费专项资金(SWJTUA0920502051307-03) (SWJTUA0920502051307-03)

高等学校博士学科点专项科研基金(P05413113613002) (P05413113613002)

国家级大学生创新创业训练计划(201710613047). (201710613047)

交通运输工程与信息学报

1672-4747

访问量0
|
下载量0
段落导航相关论文