| 注册
首页|期刊导航|生物医学工程研究|基于TQWT的癫痫脑电信号的识别

基于TQWT的癫痫脑电信号的识别

贺王鹏 杨琳 王芳 黄绍平

生物医学工程研究2017,Vol.36Issue(4):346-350,5.
生物医学工程研究2017,Vol.36Issue(4):346-350,5.DOI:10.19529/j.cnki.1672-6278.2017.04.14

基于TQWT的癫痫脑电信号的识别

Identification of Epileptic EEG Signals based on the Tunable Q-factor Wavelet Transform

贺王鹏 1杨琳 2王芳 2黄绍平2

作者信息

  • 1. 西安电子科技大学空间科学与技术学院,西安 710071
  • 2. 西安交通大学第二附属医院,西安 710004
  • 折叠

摘要

Abstract

For the problem of identifying and classifying epileptic EEG signals , we proposed an effective technique based on the tunable Q-factor wavelet transform ( TQWT) .Firstly, the TQWT was employed to decompose EEG signal into several wavelet subba-nds.Then, according to the frequency band of epileptic abnormal waves , the EEG signal was reconstructed adaptively via correspond-ing TQWT wavelet subbands .The root mean square value and peak -to-peak value indicators were calculated as feature vector .Fi-nally, the support vector machine (SVM) was introduced for classification.Moreover, the proposed method was applied to analyze real EEG data collected from the Epilepsy Research Center , University of Bonn, Germany.The results demonstrate that the proposed tech-nique can effectively detect epilepsy disease from EEG signals with good classification accuracy of 98%.

关键词

癫痫脑电/可调品质因子小波变换/支持向量机/特征提取/分类

Key words

Epileptic EEG/Tunable Q-factor wavelet transform/Support vector mahine -fator waveler transform/Feature ex-traction/Classification

分类

医药卫生

引用本文复制引用

贺王鹏,杨琳,王芳,黄绍平..基于TQWT的癫痫脑电信号的识别[J].生物医学工程研究,2017,36(4):346-350,5.

基金项目

西安交通大学临床新技术项目(XJLS-2015-179). (XJLS-2015-179)

生物医学工程研究

OACSTPCD

1672-6278

访问量0
|
下载量0
段落导航相关论文