| 注册
首页|期刊导航|通信学报|基于SAE和LSTM RNN的多模态生理信号融合和情感识别研究

基于SAE和LSTM RNN的多模态生理信号融合和情感识别研究

李幼军 黄佳进 王海渊 钟宁

通信学报2017,Vol.38Issue(12):109-120,12.
通信学报2017,Vol.38Issue(12):109-120,12.DOI:10.11959/j.issn.1000-436x.2017294

基于SAE和LSTM RNN的多模态生理信号融合和情感识别研究

Study of emotion recognition based on fusion multi-modal bio-signal with SAE and LSTM recurrent neural network

李幼军 1黄佳进 2王海渊 3钟宁1

作者信息

  • 1. 北京工业大学国际WIC研究院,北京 100124
  • 2. 磁共振成像脑信息学北京市重点实验室,北京 100124
  • 3. 脑信息智慧服务北京市国际科技合作基地,北京 100124
  • 折叠

摘要

Abstract

In order to achieve more accurate emotion recognition accuracy from multi-modal bio-signal features,a novel method to extract and fuse the signal with the stacked auto-encoder and LSTM recurrent neural networks was proposed.The stacked auto-encoder neural network was used to compress and fuse the features.The deep LSTM recurrent neural network was employed to classify the emotion states.The results present that the fused multi-modal features provide more useful information than single-modal features.The deep LSTM recurrent neural network achieves more accurate emotion classification results than other method.The highest accuracy rate is 0.792 6.

关键词

多模态生理信号情感识别/栈式自编码神经网络/长短周期记忆循环神经网络/多模态生理信号融合

Key words

multi-modal bio-signal emotion recognition/stacked auto-encoder neural network/LSTM recurrent neural network/multi-modal bio-signals fusion

分类

信息技术与安全科学

引用本文复制引用

李幼军,黄佳进,王海渊,钟宁..基于SAE和LSTM RNN的多模态生理信号融合和情感识别研究[J].通信学报,2017,38(12):109-120,12.

基金项目

国家自然科学基金资助项目(No.61420106005) (No.61420106005)

国家重点基础研究发展计划基金资助项目(No.2014CB744600) (No.2014CB744600)

国家国际科技合作专项基金资助项目(No.2013DFA32180)The National Natural Science Foundation of China (No.61420106005),The National Basic Research Program of China (No.2014CB744600),The International Science & Technology Cooperation Program of China (No.2013DFA32180) (No.2013DFA32180)

通信学报

OA北大核心CSCDCSTPCD

1000-436X

访问量0
|
下载量0
段落导航相关论文