| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于张量线性拉普拉斯判别的肌电特征提取方法

基于张量线性拉普拉斯判别的肌电特征提取方法

佘青山 马鹏刚 马玉良 孟明

东南大学学报(自然科学版)2017,Vol.47Issue(6):1117-1122,6.
东南大学学报(自然科学版)2017,Vol.47Issue(6):1117-1122,6.DOI:10.3969/j.issn.1001-0505.2017.06.006

基于张量线性拉普拉斯判别的肌电特征提取方法

EMG feature extraction based on tensor linear Laplacian discriminant

佘青山 1马鹏刚 1马玉良 1孟明1

作者信息

  • 1. 杭州电子科技大学智能控制与机器人研究所,杭州310018
  • 折叠

摘要

Abstract

To analyze the multi-dimensional characteristics in the time-frequency-space domain implied in the surface electromyogram (sEMG) signlas,a novel feature extraction method for sEMG was proposed based on tensor linear Laplacian discriminant (TLLD) First,sEMG signals were transformed into the 4-D tensor data including the information of temporal,spatial,spectral,and trials by complex morlet wavelet.Secondly,the TLLD analysis algorithm was used to obtain the projection matrix,and the training and test sets were projected into the projection matrix to obtain features with greater discrimination.Finally,the linear discriminant analysis algorithm was used to identify six forearm movements,including the wrist flexion,wrist extension,forearm pronation,forearm supination,hand close,and hand open.The experimental results show that the accuracy of the proposed method is more than 98 %,and its recognition performance is better than that of three methods of the root mean square,autoregressive coefficient and tensor high order discriminant analysis.

关键词

表面肌电信号/人机交互/特征提取/张量线性拉普拉斯判别

Key words

surface electromyogram/human-robot interaction/feature extraction/tensor linear Laplacian discriminant

分类

信息技术与安全科学

引用本文复制引用

佘青山,马鹏刚,马玉良,孟明..基于张量线性拉普拉斯判别的肌电特征提取方法[J].东南大学学报(自然科学版),2017,47(6):1117-1122,6.

基金项目

国家自然科学基金资助项目(61201302,61372023,61671197)、浙江省自然科学基金资助项目(LY15F010009). (61201302,61372023,61671197)

东南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-0505

访问量0
|
下载量0
段落导航相关论文