| 注册
首页|期刊导航|计算机工程与应用|基于加权浓缩树的粗糙集属性约简算法

基于加权浓缩树的粗糙集属性约简算法

唐坤剑 容强

计算机工程与应用2018,Vol.54Issue(2):76-81,6.
计算机工程与应用2018,Vol.54Issue(2):76-81,6.DOI:10.3778/j.issn.1002-8331.1707-0379

基于加权浓缩树的粗糙集属性约简算法

唐坤剑 1容强1

作者信息

  • 1. 郑州轻工业学院 易斯顿(国际)美术学院,郑州451450
  • 折叠

摘要

Abstract

Focused on the issue that there are redundant elements in the algorithm based on the discernibility matrix, which leads to the high cost of space storage,an attribute reduction algorithm based on weighted condensed tree is pro-posed in this paper.The algorithm can further eliminate the redundant elements,compress the information in the discern-ibility matrix,and consider the effect of attribute importance in the process of constructing the tree structure.The experi-mental results are compared with the C-Tree and the discernibility information tree algorithm.The proposed algorithm can obtain better attribute reduction results,which can effectively reduce the space complexity.

关键词

粗糙集/属性约简/分辨矩阵/加权浓缩树/空间复杂度

Key words

rough set/attribute reduction/discernibility matrix/weighted condensed tree/space complexity

分类

信息技术与安全科学

引用本文复制引用

唐坤剑,容强..基于加权浓缩树的粗糙集属性约简算法[J].计算机工程与应用,2018,54(2):76-81,6.

基金项目

2015年河南省科技厅"2015年度河南省高等学校重点科研项目"(No.15B520006). (No.15B520006)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文