| 注册
首页|期刊导航|计算机与现代化|基于SVM_KNN的老人跌倒检测算法

基于SVM_KNN的老人跌倒检测算法

张舒雅 吴科艳 黄炎子 刘守印

计算机与现代化Issue(12):49-55,7.
计算机与现代化Issue(12):49-55,7.DOI:10.3969/j.issn.1006-2475.2017.12.010

基于SVM_KNN的老人跌倒检测算法

Fall Detection Algorithm Based on SVM_KNN

张舒雅 1吴科艳 1黄炎子 1刘守印1

作者信息

  • 1. 华中师范大学物理科学与技术学院,湖北武汉430079
  • 折叠

摘要

Abstract

Falling is one of the main causes of casualties in the elderly,every year about 40 million people over the age of 65 fall accidentally.To improve the accuracy in human fall detection,a fall detection algorithm based on acceleration sensor and barometer in a smart phone is proposed,the algorithm is an improved support vector machine (SVM).Firstly,it uses the SVM to train the training set to obtain a weak 2-classifier (including the optimal hyperplane and support vector set),and then calculates the distance from the sample to the optimal hyperplane.If the distance is greater than the given threshold,the tested sample would be classified with SVM.Otherwise,the K-nearest-neighbor classifier (KNN) method will be used.In addition,in the KNN method,the distance between the eigenvectors is calculated using the standard Euclidean distance.Simulation results show that compared with the non-optimized support vector machine algorithm,this algorithm can effectively improve the fall detection accuracy and smartphones can be placed casually.

关键词

跌倒检测/SVM/KNN/SVM_KNN/Matlab

Key words

fall detection/SVM/KNN/SVM_KNN/Matlab

分类

信息技术与安全科学

引用本文复制引用

张舒雅,吴科艳,黄炎子,刘守印..基于SVM_KNN的老人跌倒检测算法[J].计算机与现代化,2017,(12):49-55,7.

基金项目

华中师范大学中央高校基本科研业务费教育科学专项资金资助项目(CCNU16JYKX019) (CCNU16JYKX019)

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文