| 注册
首页|期刊导航|陕西师范大学学报(自然科学版)|基于LARS-SVR的电影总票房预测模型研究

基于LARS-SVR的电影总票房预测模型研究

陈邦丽 徐美萍

陕西师范大学学报(自然科学版)2018,Vol.46Issue(1):10-15,6.
陕西师范大学学报(自然科学版)2018,Vol.46Issue(1):10-15,6.DOI:10.15983/j.cnki.jsnu.2018.01.113

基于LARS-SVR的电影总票房预测模型研究

Film total box office returns forecasting model research based on LARS-SVR

陈邦丽 1徐美萍1

作者信息

  • 1. 北京工商大学 理学院 ,北京 100048
  • 折叠

摘要

Abstract

All kinds of factors are taken into account in this paper .Then the least angle regression (LARS) algorithm is applied to implement influence factors selection and the support vector re-gression (SVR) is employed to fit the total box office returns with the selected main factors .The empirical research shows that the volume ,the film format ,the releasing time and the genre of a film are the main influence factors of the total box office returns .And LARS-SVR not only a-voids overfitting phenomenon of SVR by variable selection ,but also retains similar fitting accura-cy with LARS and stepwise regression and has far less forecasting error than the latter two mod -els .Finally ,on the basis of empirical results ,some recommendations are proposed as the refer-ence for the producer ,the marketing company and the cinema operator to make decision .

关键词

电影总票房预测/影响因素/最小角回归/支持向量回归

Key words

film total box office returns forecasting/influence factors/least angle regression/sup-port vector regression

分类

数理科学

引用本文复制引用

陈邦丽,徐美萍..基于LARS-SVR的电影总票房预测模型研究[J].陕西师范大学学报(自然科学版),2018,46(1):10-15,6.

基金项目

国家自然科学基金(11501017 ) (11501017 )

北京市教委科研计划一般项目(理工类)(S Q K M 201610011006 ) (理工类)

陕西师范大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1672-4291

访问量0
|
下载量0
段落导航相关论文