| 注册
首页|期刊导航|陕西科技大学学报(自然科学版)|致密储层动态渗透率预测模型

致密储层动态渗透率预测模型

董满仓 柴汝宽 辛晶 陈映赫 黄建树

陕西科技大学学报(自然科学版)2018,Vol.36Issue(1):90-95,6.
陕西科技大学学报(自然科学版)2018,Vol.36Issue(1):90-95,6.

致密储层动态渗透率预测模型

Study on prediction of dynamic permeability based on improved BP neural network

董满仓 1柴汝宽 2辛晶 2陈映赫 2黄建树2

作者信息

  • 1. 延长油田股份有限公司,陕西延安 716000
  • 2. 中国石油大学(北京)石油工程教育部重点实验室,北京 102249
  • 折叠

摘要

Abstract

In the development of the low permeability tight reservoir ,the permeability is influ-enced by so many factors ,the common permeability model that based on single variable has trouble in accurately describing the permeability .In this paper ,the main factors affecting per-meability of the low permeability reservoir are analyzed ,including effective stress ,tempera-ture and water saturation .And then we establish a BP neural network permeability prediction model optimized by the artificial bee colony algorithm ,in w hich effective stress ,temperature and water saturation are input layer nodes ,permeability is output layer node .The permeabili-ty of different conditions is used to establish learning samples for training and predicting .Re-sult show s that the maximum absolute error of the training results is 0 .06347 × 10 -3 μm2 , the maximum relative error is 4 .382% and the average relative error is 1 .069% .It shows that the BP neural network model optimized by artificial bee colony algorithm ,in other words ,the hybrid neural network can accurately describe the internal relations and laws be-tween the permeability and various influence factors .Whereas ,the average relative error of the conventional BP neural network permeability model is 10 .699% .Obviously ,the hybrid neural network is more accurate and stable than the conventional BP neural network .In one word ,the hybrid neural network has a wonderful adaptability to the permeability prediction of low permeability tight reservoirs .

关键词

致密储层/人工蜂群算法/BP神经网络/混合神经网络/渗透率预测模型

Key words

tight reservoir/artificial bee colony algorithm/back propagation neural network/hybrid neural network/permeability prediction model

分类

能源科技

引用本文复制引用

董满仓,柴汝宽,辛晶,陈映赫,黄建树..致密储层动态渗透率预测模型[J].陕西科技大学学报(自然科学版),2018,36(1):90-95,6.

基金项目

国家重大科技专项项目(2017ZX05032004-002) (2017ZX05032004-002)

陕西科技大学学报(自然科学版)

OACSTPCD

1000-5811

访问量0
|
下载量0
段落导航相关论文