西北师范大学学报(自然科学版)2018,Vol.54Issue(1):9-15,7.DOI:10.16783/j.cnki.nwnuz.2018.01.003
一类捕食-食饵模型共存解的存在性
The existence of coexistence solutions of a predator-prey model
摘要
Abstract
The coexistence solutions of a predator-prey model with homogeneous Dirichlet boundary value conditions are studied . Firstly , by using the principle of extremum and the Young inequality , a priori estimate of positive equilibrium solution is given . Secondly , the sufficient and necessary conditions for the existence of positive solutions to equilibrium equation are discussed through the fixed-point index , topological degree theory and spectral analysis methods . Finally , taking the death rate as the bifurcation parameter , the existence of positive solution to this system is derived by making use of local bifurcation theory .关键词
捕食-食饵模型/共存解/不动点指数/拓扑度理论/局部分歧Key words
predator-prey model/coexistence solutions/fixed-point index/topological degree theory/local bifurcation theory分类
数理科学引用本文复制引用
魏欢,杨文彬,李艳玲..一类捕食-食饵模型共存解的存在性[J].西北师范大学学报(自然科学版),2018,54(1):9-15,7.基金项目
国家自然科学基金资助项目(61672021) (61672021)
陕西省教育厅专项科研计划项目(16JK1710) (16JK1710)