| 注册
首页|期刊导航|北京交通大学学报|面向嵌入式应用的深度神经网络模型压缩技术综述

面向嵌入式应用的深度神经网络模型压缩技术综述

王磊 赵英海 杨国顺 王若琪

北京交通大学学报2017,Vol.41Issue(6):34-41,8.
北京交通大学学报2017,Vol.41Issue(6):34-41,8.DOI:10.11860/j.issn.1673-0291.2017.06.006

面向嵌入式应用的深度神经网络模型压缩技术综述

A survey on model compression of deep neural network for embedded system

王磊 1赵英海 1杨国顺 1王若琪1

作者信息

  • 1. 中国航天科工集团三十五研究所,北京 100013
  • 折叠

摘要

Abstract

Combined the big data acquisition,the key technologies of deep neural network have widely applied in the field of image classification,object detection,speech recognition,natural language processing,et al.With the developing of the deep neural network model performance, the model size and the required calculation need to be improved,so that it is reliance on high power computing platform.This paper is focus on the deep neural network model compression technology for embedded applications in order to solve the problems of storage resource,memory access speed constraints and computing resources limit in embedded system.It aims to reduce the model size and the complex computation.Meanwhile,it could optimize the process of calculation. This paper has summarized the state-of-the-art model compression technologies including model pruning,fine model designing,tensor decomposition,model quantization,etc.Through the summary on the model development,it could provide the references for the studies of the deep neural network model compression technologies.

关键词

深度神经网络/模型压缩/模型裁剪/张量分解/嵌入式系统

Key words

deep neural network/model compression/model pruning/tensor decomposition/em-bedded system

分类

信息技术与安全科学

引用本文复制引用

王磊,赵英海,杨国顺,王若琪..面向嵌入式应用的深度神经网络模型压缩技术综述[J].北京交通大学学报,2017,41(6):34-41,8.

基金项目

国家自然科学基金(61572065) National Natural Science Foundation of China (61572065) (61572065)

北京交通大学学报

OA北大核心CSCDCSTPCD

1673-0291

访问量0
|
下载量0
段落导航相关论文