| 注册
首页|期刊导航|高压物理学报|动能弹对混凝土靶侵彻深度的PSO-SVM预测

动能弹对混凝土靶侵彻深度的PSO-SVM预测

潘强 张继春 肖清华 邹新宽 石洪超

高压物理学报2018,Vol.32Issue(2):106-113,8.
高压物理学报2018,Vol.32Issue(2):106-113,8.DOI:10.11858/gywlxb.20170577

动能弹对混凝土靶侵彻深度的PSO-SVM预测

Prediction of Penetration Depth of Projectiles into Concrete Targets Based on PSO-SVM

潘强 1张继春 1肖清华 1邹新宽 2石洪超1

作者信息

  • 1. 西南交通大学土木工程学院,四川 成都 610031
  • 2. 自贡市城市建设投资开发集团有限公司,四川 自贡 643000
  • 折叠

摘要

Abstract

The prediction of the penetration depth of concrete in concrete damage effect is of great significance to the design and construction in protection engineering.However,the traditional methods for this prediciton involve such problems as requiring a great supply of samples,or suffering from a large prediction error,and so on.In this work,following the theory of the support vector machine(SVM)and according to the parameters optimized through the particle swarm optimization(PSO),the PSO-SVM for predicting the penetration depth was proposed.The corresponding programs were written and the prediction was verified by the experiment data.The results show that the PSO-SVM method has a great advantage for small samples and non-linear prediction.In comparison with the traditional grey theory,the relative predicted errors through the PSO-SVM method are smaller(the maximum relative error being 3.18%).As the number of the samples increases,the maximum relative errors decrease and the changing rate slows down whereas,however,the amount of calcula-tion becomes larger.Above all,it is feasible to apply PSO-SVM method to the prediction of penetration depth of projectiles into concrete targets.

关键词

粒子群优化/支持向量机/混凝土靶/侵彻深度/预测

Key words

particle swarm optimization/support vector machine/concrete targets/penetration depth/prediction

分类

数理科学

引用本文复制引用

潘强,张继春,肖清华,邹新宽,石洪超..动能弹对混凝土靶侵彻深度的PSO-SVM预测[J].高压物理学报,2018,32(2):106-113,8.

基金项目

国家自然科学基金(50574076) (50574076)

高压物理学报

OA北大核心CSCDCSTPCD

1000-5773

访问量0
|
下载量0
段落导航相关论文