| 注册
首页|期刊导航|计量学报|基于分形维数和GA-SVM的风电机组齿轮箱轴承故障诊断

基于分形维数和GA-SVM的风电机组齿轮箱轴承故障诊断

时培明 梁凯 赵娜 安淑君

计量学报2018,Vol.39Issue(1):61-65,5.
计量学报2018,Vol.39Issue(1):61-65,5.DOI:10.3969/j.issn.1000-1158.2018.01.14

基于分形维数和GA-SVM的风电机组齿轮箱轴承故障诊断

Fault Diagnosis of Wind Turbine Gearbox Bearing Based on Fractal Dimension and GA-SVM

时培明 1梁凯 1赵娜 1安淑君1

作者信息

  • 1. 燕山大学电气工程学院,河北秦皇岛066004
  • 折叠

摘要

Abstract

For wind turbine gearbox bearing fault diagnosis is studied,and a fault diagnosis method based on the fractal dimension and genetic algorithm support vector machine (GA-SVM) is put forward.Based on the commonly used time domain feature parameters as the support vector machine identification parameters,the fractal dimension feature parameters are introduced to enhance the recognition accuracy of support vector machines.The model of support vector machine parameters optimization based on genetic algorithm is proposed,and the optimal support vector machine parameters are obtained by the optimization of GA.Using the gear box bearing data from a wind farm in Zhangjiakou,Hebei province for fault diagnosis.Experimental results show that the proposed model GA-SVM provided a good solution to the parameter selection problem,as well as the characteristic parameters based on fractal dimension also improve the recognition accuracy of wind turbine bearing failure.

关键词

计量学/轴承故障诊断/风电齿轮箱/分形维数/遗传算法支持向量机/识别准确率

Key words

metrology/fault diagnosis of bearing/wind turbine gearbox/fractal dimension/genetic algorithm support vector machine/recognition accuracy

分类

通用工业技术

引用本文复制引用

时培明,梁凯,赵娜,安淑君..基于分形维数和GA-SVM的风电机组齿轮箱轴承故障诊断[J].计量学报,2018,39(1):61-65,5.

基金项目

国家自然科学基金(51475407) (51475407)

计量学报

OA北大核心CSCDCSTPCD

1000-1158

访问量0
|
下载量0
段落导航相关论文