| 注册
首页|期刊导航|计算机应用与软件|基于最大熵谱估计和时频特性的语音端点检测

基于最大熵谱估计和时频特性的语音端点检测

陈莹莹 简磊

计算机应用与软件2017,Vol.34Issue(11):91-96,6.
计算机应用与软件2017,Vol.34Issue(11):91-96,6.DOI:10.3969/j.issn.1000-386x.2017.11.017

基于最大熵谱估计和时频特性的语音端点检测

SPEECH SIGNAL ENDPOINT DETECTION BASED ON MAXIMUM ENTROPY SPECTRUM ESTIMATION AND TIME-FREQUENCY SIGNATURE

陈莹莹 1简磊1

作者信息

  • 1. 四川大学锦江学院电气与电子信息工程学院 四川彭山620860
  • 折叠

摘要

Abstract

Speech endpoint detection is crucial to the construction of a practical automatic speech recognition system.A new algorithm based on the maximum entropy spectrum estimation and time-frequency signature is proposed to improve the performance of speech endpoint detection in low SNR (Signal Noise Ratio) environment.The framed speech signal power spectrum was estimated through the maximum entropy,and then the characteristics of noisy speech were extracted in time-frequency field in order to detect the endpoint.Experimental results show that,this method can accurately capture the characteristics of speech signals under lower SNR (-9 ~ 0 dB),and significantly improves the accuracy of endpoint detection.

关键词

端点检测/最大熵谱估计/时频特性/信噪比

Key words

Endpoint detection/Maximum entropy spectrum estimation/Time-frequency characteristics/SNR

分类

信息技术与安全科学

引用本文复制引用

陈莹莹,简磊..基于最大熵谱估计和时频特性的语音端点检测[J].计算机应用与软件,2017,34(11):91-96,6.

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量2
|
下载量0
段落导航相关论文