| 注册
首页|期刊导航|水利水电技术|基于EMD分解法的大坝变形预测模型及应用

基于EMD分解法的大坝变形预测模型及应用

金盛杰 包腾飞 陈迪辉 钱秋培

水利水电技术2017,Vol.48Issue(12):41-44,62,5.
水利水电技术2017,Vol.48Issue(12):41-44,62,5.DOI:10.13928/j.cnki.wrahe.2017.12.007

基于EMD分解法的大坝变形预测模型及应用

EMD decomposition method-based dam deformation prediction model and its application

金盛杰 1包腾飞 2陈迪辉 3钱秋培1

作者信息

  • 1. 河海大学水文水资源与水利工程科学国家重点实验室,江苏南京210098
  • 2. 河海大学水资源高效利用与工程安全国家工程研究中心,江苏南京210098
  • 3. 河海大学水利水电学院,江苏南京 210098
  • 折叠

摘要

Abstract

Aiming at the situation of that the prediction effect from the conventional model on the fluctuation time series is poor,a EMD decomposition method-based dam deformation prediction model is put forward herein in combination with the merits of the empirical mode decomposition (EMD) and the theory of the relevance vector machine (RVM) as well as the improved particle swarm optimization (IPSO) algorithm.At first,the dam deformation time series is decomposed and reconstructed with the EMD decomposition method to make the non-stationary dam deformation time series stationarized,and then the prediction is carried out based on the RVM theory,for which the gauss function is used as the kernel function and the improved particle swarm optimization (IPSO) algorithm is adopted for the optimization,thus the EMD-RVM (IPSO) prediction model for dam deformation is established finally.It is obtained through the relevant actual case that the mean residuals of the SVM,RVM and EMD-RVM (IPSO)models are 5.29 mm,3.13 mm and 0.97 mm respectively,while all the errors of the predicted values from the EMD-RVM(IP-SO) model are controlled within the range of 5%.It is demonstrated that the pre-processing of the non-stationary time series made by the EMD decomposition method can effectively enhance the prediction accuracy,thus if compared with the standardized SVM model and RVM model,the prediction accuracy of the EMD-RVM(IPSO) is higher with better structure sparsity,and then has a certain feasibility in the engineering practice concerned.

关键词

大坝变形/预测/EMD分解法/相关向量机/改进粒子群算法

Key words

dam deformation/prediction/EMD decomposition method/relevance vector machine/improved particle swarm optimization algorithm

分类

建筑与水利

引用本文复制引用

金盛杰,包腾飞,陈迪辉,钱秋培..基于EMD分解法的大坝变形预测模型及应用[J].水利水电技术,2017,48(12):41-44,62,5.

基金项目

国家自然科学基金面上项目(51479054) (51479054)

国家自然科学基金项目(51579085) (51579085)

国家自然科学基金项目(41323001) (41323001)

江苏省2015年度普通高校研究生科研创新计划项目(KYZZ15-0140,KYZZ15-0138) (KYZZ15-0140,KYZZ15-0138)

水利水电技术

OA北大核心CSCDCSTPCD

1000-0860

访问量0
|
下载量0
段落导航相关论文