| 注册
首页|期刊导航|中国电机工程学报|基于两阶段支持向量机的电力系统暂态稳定预测及预防控制

基于两阶段支持向量机的电力系统暂态稳定预测及预防控制

周艳真 吴俊勇 冀鲁豫 于之虹 郝亮亮

中国电机工程学报2018,Vol.38Issue(1):137-147,后插14,12.
中国电机工程学报2018,Vol.38Issue(1):137-147,后插14,12.DOI:10.13334/j.0258-8013.pcsee.162072

基于两阶段支持向量机的电力系统暂态稳定预测及预防控制

Two-stage Support Vector Machines for Transient Stability Prediction and Preventive Control of Power Systems

周艳真 1吴俊勇 1冀鲁豫 1于之虹 2郝亮亮1

作者信息

  • 1. 北京交通大学电气工程学院,北京市海淀区 100044
  • 2. 中国电力科学研究院,北京市海淀区 100192
  • 折叠

摘要

Abstract

This paper focused on the data driven transient stability analysis of power systems. Considering different requirements of stability analysis and preventive control for input features, and in order to balance the accuracy and transparency of the data mining models, a two-stage support vector machines was presented for transient stability prediction and preventive control. In the first stage, a preventive control model was built using the controllable variables and simple model. In the second stage, a complex but accurate model was built for transient stability prediction. Moreover, the generated preventive control model can also provide a basis for the instance selection for the second stage. The test results show that the proposed prediction model can predict the transient stability accurately and with shorter training time;when the power system is predicted as unstable, preventive control measures can be provided to ensure the security and stability of power system operation.

关键词

暂态稳定预测/预防控制/两阶段/支持向量机/特征选择/样本筛选/数据挖掘

Key words

transient stability prediction/preventive control/two-stage/support vector machine/feature selection/instance selection/data mining

分类

信息技术与安全科学

引用本文复制引用

周艳真,吴俊勇,冀鲁豫,于之虹,郝亮亮..基于两阶段支持向量机的电力系统暂态稳定预测及预防控制[J].中国电机工程学报,2018,38(1):137-147,后插14,12.

基金项目

国家自然科学基金项目(51577009). Project Supported by National Natural Science Foundation of China (51577009). (51577009)

中国电机工程学报

OA北大核心CSCDCSTPCD

0258-8013

访问量0
|
下载量0
段落导航相关论文