| 注册
首页|期刊导航|计算机工程与应用|综合时频域及核判别分析的两级特征提取新方法

综合时频域及核判别分析的两级特征提取新方法

孙贤明 樊晓光 禚真福 丛伟 陈少华

计算机工程与应用2018,Vol.54Issue(3):115-119,141,6.
计算机工程与应用2018,Vol.54Issue(3):115-119,141,6.DOI:10.3778/j.issn.1002-8331.1608-0316

综合时频域及核判别分析的两级特征提取新方法

New method of two classes feature extraction based on kernel linear discriminant analysis following integrated time and frequency domains

孙贤明 1樊晓光 1禚真福 1丛伟 1陈少华1

作者信息

  • 1. 空军工程大学 航空航天工程学院,西安 710038
  • 折叠

摘要

Abstract

In order to solve the problem of incomplete and inaccurate feature extraction in analog circuit soft fault diagnosis, a new method of two classes feature extraction based on Kernel Linear Discriminant Analysis(KLDA)following integrated time and frequency domains is proposed in this paper. At first, the statistics features in time domain such as mean, standard deviation and energies within different frequency bands by wavelet packet decomposition as frequency domain features are extracted from the acquired fault response signals. Then the kernel linear discriminant analysis method is used to further optimize and select fault features, which guarantees the validity on fault feature. Finally, the obtained optimal fault features are inputted into support vector machine to distinguish different faults. Experimental results on Sallen-Key band-pass filter circuit show that this method can reflect the essential characteristics of fault response signal and improve the performance of fault diagnosis effectively.

关键词

模拟电路软故障诊断/特征提取/小波包能量谱/时域统计特征/核判别分析/有向无环图支持向量机

Key words

soft fault diagnosis of analog circuit/feature extraction/wavelet packet energy spectrum/statistic feature in time domain/kernel linear discriminant analysis/directed acyclic graph support vector machine

分类

信息技术与安全科学

引用本文复制引用

孙贤明,樊晓光,禚真福,丛伟,陈少华..综合时频域及核判别分析的两级特征提取新方法[J].计算机工程与应用,2018,54(3):115-119,141,6.

基金项目

航空自然科学基金(No.20142896022). (No.20142896022)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文