| 注册
首页|期刊导航|计算机工程与应用|简化LSTM的语音合成

简化LSTM的语音合成

陈宙斯 胡文心

计算机工程与应用2018,Vol.54Issue(3):131-135,5.
计算机工程与应用2018,Vol.54Issue(3):131-135,5.DOI:10.3778/j.issn.1002-8331.1608-0332

简化LSTM的语音合成

Speech synthesis using simplified LSTM

陈宙斯 1胡文心1

作者信息

  • 1. 华东师范大学 计算中心,上海 200062
  • 折叠

摘要

Abstract

Conventional parametric speech synthesis approach using hidden Markov model can hardly obtain significant improvement when trained with large scale data. As Long Short-Term Memory(LSTM)is designed to take full account of the long-term sequence features, it dynamically produces an output respecting on the input and its internal status, which brings more accuracy and smoothness in sequential prediction. However, its large computation is still tailorable. In this paper, LSTM is simplified by removing the forget gate and output gate, and then models the relationship between syllable and its cepstral on a Chinese speech data set. Both training and prediction time decrease by half while Mel cepstral distortion goes down from HMM's 3.4661 to 1.9459.

关键词

参数化语音合成/神经网络/长短期记忆神经网络

Key words

parametric speech synthesis/neural network/Long Short-Term Memory(LSTM)

分类

信息技术与安全科学

引用本文复制引用

陈宙斯,胡文心..简化LSTM的语音合成[J].计算机工程与应用,2018,54(3):131-135,5.

基金项目

国家科技支撑项目(No.2015BAH01F02). (No.2015BAH01F02)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文