| 注册
首页|期刊导航|煤矿安全|基于LVQ-GA-BP神经网络的煤矿瓦斯涌出量预测

基于LVQ-GA-BP神经网络的煤矿瓦斯涌出量预测

谢丽蓉 王晋瑞 穆塔里夫·阿赫迈德 路朋 牛永朝

煤矿安全2017,Vol.48Issue(12):150-152,156,4.
煤矿安全2017,Vol.48Issue(12):150-152,156,4.DOI:10.13347/j.cnki.mkaq.2017.12.040

基于LVQ-GA-BP神经网络的煤矿瓦斯涌出量预测

Prediction for Coal Mine Gas Emission Based on LVQ-GA-BP Neural Network

谢丽蓉 1王晋瑞 1穆塔里夫·阿赫迈德 1路朋 1牛永朝1

作者信息

  • 1. 新疆大学电气工程学院,新疆乌鲁木齐830047
  • 折叠

摘要

Abstract

We combine the learning vector quantization (LVQ) and GA-BP neural network to predict gas emission in the view of the characteristics of varied,nonlinear and complex gas emission in coal mine.The algorithm classified and selected the main influence factors,and used genetic algorithm to optimize the weight and threshold of BP neural network to construct the prediction model of mine gas emission quantity.LVQ-GA-BP prediction model established by related data is compared and analyzed with BP neural network,the result shows that the average relative error of this method is 0.025 51 and is lower than that of the BP neural network,and the method improves the prediction accuracy.

关键词

LVQ神经网络/遗传算法/BP神经网络/煤矿瓦斯涌出量/预测

Key words

LVQ neural network/genetic algorithm/BP neural network/gas emission of coal mine/prediction

分类

矿业与冶金

引用本文复制引用

谢丽蓉,王晋瑞,穆塔里夫·阿赫迈德,路朋,牛永朝..基于LVQ-GA-BP神经网络的煤矿瓦斯涌出量预测[J].煤矿安全,2017,48(12):150-152,156,4.

基金项目

国家自然科学基金资助项目(51264036) (51264036)

煤矿安全

OA北大核心CSTPCD

1003-496X

访问量2
|
下载量0
段落导航相关论文