| 注册
首页|期刊导航|石油物探|基于稀疏反演的同步震源地震数据分离方法

基于稀疏反演的同步震源地震数据分离方法

周艳辉 陈文超

石油物探2018,Vol.57Issue(1):33-38,6.
石油物探2018,Vol.57Issue(1):33-38,6.DOI:10.3969/j.issn.1000-1441.2018.01.004

基于稀疏反演的同步震源地震数据分离方法

Separation of simultaneous source data based on sparse inversion

周艳辉 1陈文超1

作者信息

  • 1. 西安交通大学电信学院波动与信息研究所,陕西西安 710049
  • 折叠

摘要

Abstract

Separation of blended seismic data acquired in simultaneous source acquisition is substantially necessary.A sparse inver-sion-based method to separate blended data in case of a random time-dithering scheme is presented in this paper.The first step is the extraction of block training data from clean shot gathers without blending.The extracted data is used to train a learned dictiona-ry through the K-SVD algorithm,based on sparse representation and patch-wise dictionary learning.An inverse problem expression for the separation of blended data was then developed based on sparse inversion.We used the sparse representation of blended data as regularization constraint and performed an alternate iterative scheme to update the separated recovery data and sparse coeffi-cients respectively.Testing on the synthetic and field data demonstrated that the recovery data obtained from dictionary learning had better separation accuracy compared to that based on two dimensional fixed local discrete cosine transform.

关键词

同步震源采集/字典学习/稀疏反演/地震记录分离/稀疏表示

Key words

simultaneous source acquisition/dictionary learning/sparse inversion/separation of blended seismic data/sparse repre-sentation

分类

天文与地球科学

引用本文复制引用

周艳辉,陈文超..基于稀疏反演的同步震源地震数据分离方法[J].石油物探,2018,57(1):33-38,6.

基金项目

国家自然科学基金项目(41504093,41774135)和陕西省工业攻关项目(2015GY058)共同资助. This research is financially supported by National Natural Science Foundation of China (Grant Nos.41504093,41774135 )and the Industrial re-search project of Science and Technology Department of Shaanxi Province (Grant No.2015GY058). (41504093,41774135)

石油物探

OA北大核心CSCDCSTPCD

1000-1441

访问量0
|
下载量0
段落导航相关论文