| 注册
首页|期刊导航|液压与气动|基于核超限学习机的轴向柱塞泵故障诊断

基于核超限学习机的轴向柱塞泵故障诊断

曾祥辉 兰媛 黄家海 胡晋伟 魏晋宏 武兵

液压与气动Issue(1):61-64,4.
液压与气动Issue(1):61-64,4.DOI:10.11832/j.issn.1000-4858.2018.01.010

基于核超限学习机的轴向柱塞泵故障诊断

Fault Diagnosis Based on Kernel Extreme Learning Machine for Axial Piston Pump

曾祥辉 1兰媛 1黄家海 1胡晋伟 1魏晋宏 1武兵1

作者信息

  • 1. 太原理工大学机械工程学院,山西太原030024
  • 折叠

摘要

Abstract

The complex internal structure of the piston pump and the coupling between structures result in the increasing difficulty of the piston pump's fault diagnosis.In order to improve the reliability and diagnostic speed of the algorithm,the method of combining the kernel function and the extreme learning machine is used to diagnose the fault of piston pump.Firstly,the vibration and flow rate signal of the pump under normal and different fault conditions are collected by an accelerometer and a flowmeter,and the wavelet packet decomposition is used to remove the noise.Then,a total of 8-dimensional characteristic vectors are extracted,including the time domain dimensionless index,the maximum energy of band energy decomposed by the wavelet packet and the flow value of the flowmeter in the system.Finally,the kernel extreme learning machine is used to identify and diagnose 4 kinds of faults (slipper abrasion,valve plate abrasion,central spring failure,and loose slipper fault).The experimental results show that compared with the extreme learning machine,the traditional intelligent diagnosis algorithm support vector machine and the back propagation neural network,the kernel extreme learning machine has obvious advantages in fault diagnosis.

关键词

故障诊断/核函数/超限学习机/轴向柱塞泵

Key words

fault diagnosis/kernel function/extreme learning machine/axial piston pump

分类

机械制造

引用本文复制引用

曾祥辉,兰媛,黄家海,胡晋伟,魏晋宏,武兵..基于核超限学习机的轴向柱塞泵故障诊断[J].液压与气动,2018,(1):61-64,4.

基金项目

国家自然科学基金(51405327) (51405327)

山西省科技成果转化与推广计划项目(20051002) (20051002)

液压与气动

OA北大核心CSTPCD

1000-4858

访问量0
|
下载量0
段落导航相关论文