| 注册
首页|期刊导航|安徽农业科学|基于高光谱的土壤有机碳含量预测研究

基于高光谱的土壤有机碳含量预测研究

张静

安徽农业科学2018,Vol.46Issue(2):1-3,7,4.
安徽农业科学2018,Vol.46Issue(2):1-3,7,4.

基于高光谱的土壤有机碳含量预测研究

Prediction Research of Soil Organic Carbon Content Based on Hypers Pectral

张静1

作者信息

  • 1. 安徽师范大学,安徽芜湖241000
  • 折叠

摘要

Abstract

[Objective] To predict soil organic carbon content.[Method] Surface soil was detected by high spectrometer spectrometric and spectral data was treated,through stepwise multiple linear regression (SMLR) and partial least-squares regression (PLSR) method,soil organic carbon content was predicted,and the accuracy of the two models was compared.[Result] The accuracy of PLSR model was higher than SMLR model.[Conclusion] PLSR method is better than SMLR method in forecasting organic carbon.

关键词

土壤/有机碳/高光谱/多元线性逐步回归/偏最小二乘回归

Key words

Soil/Organic carbon/Hyperspectral/SMLR/PLSR

分类

农业科技

引用本文复制引用

张静..基于高光谱的土壤有机碳含量预测研究[J].安徽农业科学,2018,46(2):1-3,7,4.

安徽农业科学

0517-6611

访问量0
|
下载量0
段落导航相关论文