| 注册
首页|期刊导航|广东电力|基于元素分析的煤粉工业分析GA-SVM预测模型

基于元素分析的煤粉工业分析GA-SVM预测模型

陈红 黎盛鸣 耿向瑾 赵明 谭鹏 方庆艳 张成

广东电力2018,Vol.31Issue(1):30-35,6.
广东电力2018,Vol.31Issue(1):30-35,6.DOI:10.3969/j.issn.1007-290X.2018.001.006

基于元素分析的煤粉工业分析GA-SVM预测模型

GA-SVM Prediction Model for Pulverized Coal Proximate Analysis Based on Ultimate Analysis

陈红 1黎盛鸣 2耿向瑾 1赵明 3谭鹏 2方庆艳 2张成2

作者信息

  • 1. 云南电力试验研究院(集团)有限公司,云南 昆明650051
  • 2. 煤燃烧国家重点实验室(华中科技大学),湖北 武汉430074
  • 3. 云南电网有限责任公司电力科学研究院,云南 昆明650051
  • 折叠

摘要

Abstract

Genetic algorithm (GA)and support vector machine (SVM)methods were used to build a rapid prediction method for pulverized coal proximate analysis based on ultimate analysis.According to 6 029 groups of the U.S.pulverized coal da-ta,this model took ultimate analysis on pulverized coal including C,H,O,N and S as inputs and proximate analysis inclu-ding volatile and fixed carbon as outputs.Another 74 groups of Chinese pulverized coal data were obtained through standard experiments for model verification.Corresponding results indicate average relative errors of prediction on volatile and fixed carbon of the U.S.pulverized coal are 4.60% and 3.22%,and average relative errors of prediction on volatile and fixed carbon of the Chinese pulverized coal are 9.16% and 3.55%.It is proved this model can well make use of ultimate analysis data to predict fixed carbon and volatile and has small prediction errors.

关键词

煤粉/元素分析/工业分析/支持向量机/遗传算法/预测

Key words

pulverized coal/ultimate analysis/proximate analysis/support vector machine/genetic algorithm/prediction

分类

能源科技

引用本文复制引用

陈红,黎盛鸣,耿向瑾,赵明,谭鹏,方庆艳,张成..基于元素分析的煤粉工业分析GA-SVM预测模型[J].广东电力,2018,31(1):30-35,6.

基金项目

国家自然科学基金(51676076) (51676076)

广东电力

OACSTPCD

1007-290X

访问量0
|
下载量0
段落导航相关论文