| 注册
首页|期刊导航|计算机工程与应用|一种新的L1度量Fisher线性判别分析研究

一种新的L1度量Fisher线性判别分析研究

余景丽 胡恩良 张涛

计算机工程与应用2018,Vol.54Issue(4):128-134,7.
计算机工程与应用2018,Vol.54Issue(4):128-134,7.DOI:10.3778/j.issn.1002-8331.1608-0557

一种新的L1度量Fisher线性判别分析研究

Study of Fisher linear discriminant analysis based on L1 -norm

余景丽 1胡恩良 1张涛1

作者信息

  • 1. 云南师范大学 数学学院,昆明650500
  • 折叠

摘要

Abstract

Fisher Linear Discriminant Analysis(FLDA)is a classical method of feature extraction with supervised infor-mation,which maximizes the Fisher criterion to find the optimal projection matrix.In the criterion of standard FLDA,the involved metric is based on L2norm metric, which is usually lack of robustness and sensitive to outliers. In order to improve the robustness,this paper proposes a new model and algorithm for FLDA,which is based on L1norm metric. The experimental results show that,FLDA with L1norm outperforms that with L2norm in classification accuracy and robustness in many cases.

关键词

Fisher线性判别分析/Fisher准则/L1范数度量/鲁棒性/特征提取

Key words

Fisher linear discriminant analysis/Fisher criterion/L1norm metric/robustness/feature extraction

分类

信息技术与安全科学

引用本文复制引用

余景丽,胡恩良,张涛..一种新的L1度量Fisher线性判别分析研究[J].计算机工程与应用,2018,54(4):128-134,7.

基金项目

国家自然科学基金(No.61165012,No.61663049). (No.61165012,No.61663049)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量2
|
下载量0
段落导航相关论文