| 注册
首页|期刊导航|计算机工程与应用|基于改进栈式稀疏去噪自编码器的图像去噪

基于改进栈式稀疏去噪自编码器的图像去噪

马红强 马时平 许悦雷 吕超 辛鹏 朱明明

计算机工程与应用2018,Vol.54Issue(4):199-204,236,7.
计算机工程与应用2018,Vol.54Issue(4):199-204,236,7.DOI:10.3778/j.issn.1002-8331.1709-0155

基于改进栈式稀疏去噪自编码器的图像去噪

Image denoising based on improved stacked sparse denoising autoencoder

马红强 1马时平 1许悦雷 1吕超 1辛鹏 1朱明明1

作者信息

  • 1. 空军工程大学 航空工程学院,西安710038
  • 折叠

摘要

Abstract

In order to improve the image denoising performance of Stacked Sparse Denoising Auto-encoder(SSDA)and solve the problems of high computational complexity, difficult parameters adjustment and slow training convergence speed, the image denoising algorithm based on Stacked Marginalized Sparse Denoising Auto-encoder(SMSDA)is pro-posed.Marginalized Sparse Denoising Auto-encoder(MSDA)is formed by marginalizing the loss function of SDA net-work because of the fast convergence speed of the Marginalized Denoising Auto-encoder(MDA),which has the character-istics of SAE and MDA.Then,multiple MSDA is stacked to form deep neural network SMSDA.The unsupervised greedy layer-wise training algorithm is used to train each layer of network for avoiding the local optimization of the model parame-ters.The BP(Back Propagation)algorithm is used to fine tune the whole network and can obtain the optimal weight.Last, SMSDA is used to denoise a given image.Simulation results show that the proposed algorithm has higher Peak Signal to Noise Ratio(PSNR)while reducing the computational complexity and improving the convergence rate,retains more details of the original image and has better denoising performance than SSDA.

关键词

图像去噪/深度学习/纹理细节/降噪自编码器/稀疏自编码器

Key words

image denoising/deep learning/texture detail/Denoising Auto-Encoder(DAE)/Sparse Denoising Auto-encoder(SDA)

分类

信息技术与安全科学

引用本文复制引用

马红强,马时平,许悦雷,吕超,辛鹏,朱明明..基于改进栈式稀疏去噪自编码器的图像去噪[J].计算机工程与应用,2018,54(4):199-204,236,7.

基金项目

国家自然科学基金(No.61372167,No.61379104). (No.61372167,No.61379104)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量1
|
下载量0
段落导航相关论文