| 注册
首页|期刊导航|自动化学报|一种基于视觉词典优化和查询扩展的图像检索方法

一种基于视觉词典优化和查询扩展的图像检索方法

柯圣财 李弼程 陈刚 赵永威 魏晗

自动化学报2018,Vol.44Issue(1):99-105,7.
自动化学报2018,Vol.44Issue(1):99-105,7.DOI:10.16383/j.aas.2018.c160041

一种基于视觉词典优化和查询扩展的图像检索方法

Image Retrieval with Enhanced Visual Dictionary and Query Expansion

柯圣财 1李弼程 2陈刚 3赵永威 1魏晗1

作者信息

  • 1. 解放军信息工程大学信息系统工程学院 郑州450001
  • 2. 75830部队 广州510000
  • 3. 华侨大学计算机科学与技术学院 厦门361021
  • 折叠

摘要

Abstract

The most popular approach in image retrieval is based on the bag of visual-words(BoVW)model. However, there are several fundamental problems that restrict the performance of this method, such as low time efficiency, weak discrimination of visual words and less robustness. So, an image retrieval method with enhanced visual dictionary and query expansion is proposed. Firstly, clustering by fast search and finding density peaks are used to generate a group of visual words. Secondly, non-information words in the dictionary are eliminated by Chi-square model to improve the distinguishing ability of the visual dictionary. Finally, an efficient graph-based visual reranking method is introduced to refine the initial search results. Experimental results of Oxford5K and Paris6K datasets indicate that the expression ability of visual dictionary is effectively improved and the method is superior to the state-of-the-art image retrieval methods in performance.

关键词

视觉词典模型/密度聚类/卡方模型/查询扩展

Key words

Bag of visual words(BoVW)/clustering based on density/Chi-square model/query expansion

引用本文复制引用

柯圣财,李弼程,陈刚,赵永威,魏晗..一种基于视觉词典优化和查询扩展的图像检索方法[J].自动化学报,2018,44(1):99-105,7.

基金项目

国家自然科学基金(60872142),华侨大学科研基金资助Supported by National Natural Science Foundation of China(60872142)and Scientific Research Funds of Huaqiao University本文责任编委刘跃虎 (60872142)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文