| 注册
首页|期刊导航|自动化学报|基于跨连接LeNet-5网络的面部表情识别

基于跨连接LeNet-5网络的面部表情识别

李勇 林小竹 蒋梦莹

自动化学报2018,Vol.44Issue(1):176-182,7.
自动化学报2018,Vol.44Issue(1):176-182,7.DOI:10.16383/j.aas.2018.c160835

基于跨连接LeNet-5网络的面部表情识别

Facial Expression Recognition with Cross-connect LeNet-5 Network

李勇 1林小竹 2蒋梦莹1

作者信息

  • 1. 北京石油化工学院信息工程学院 北京102617
  • 2. 北京化工大学信息科学与技术学院 北京100029
  • 折叠

摘要

Abstract

In order to avoid the influence of human factors on facial expression feature extraction, convolution neural network is adopted for facial expression recognition in this paper. Compared with the traditional method of facial expression recognition which requires complicated manual feature extraction, convolutional neural network can omit the process of feature extraction. The classical LeNet-5 convolutional neural network has a good recognition rate in handwritten digital dataset,but a low recognition rate in facial expression recognition. An improved LeNet-5 convolution neural network is proposed for facial expression recognition, which combines low-level features with high-level features extracted from the network structure to construct the classifier. The method achieves good results in JAFFE expression dataset and the CK+dataset.

关键词

卷积神经网络/面部表情识别/特征提取/跨连接

Key words

Convolutional neural network/facial expression recognition/feature extraction/cross-connect

引用本文复制引用

李勇,林小竹,蒋梦莹..基于跨连接LeNet-5网络的面部表情识别[J].自动化学报,2018,44(1):176-182,7.

基金项目

国家自然科学基金(60772168)资助Supported by National Natural Science Foundation of China(60772168) (60772168)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文