| 注册
首页|期刊导航|中国水利水电科学研究院学报|基于摆度大数据的水轮发电机故障预测方法研究

基于摆度大数据的水轮发电机故障预测方法研究

段炼达 刘晓波

中国水利水电科学研究院学报2017,Vol.15Issue(6):439-443,5.
中国水利水电科学研究院学报2017,Vol.15Issue(6):439-443,5.DOI:10.13244/j.cnki.jiwhr.2017.06.005

基于摆度大数据的水轮发电机故障预测方法研究

Study on failure prediction for hydro-generator based on big data of run-out value

段炼达 1刘晓波1

作者信息

  • 1. 中国水利水电科学研究院北京中水科水电科技开发有限公司,北京100038
  • 折叠

摘要

Abstract

The hydropower plants have accumulated mass production data,which is of great value to failure prediction.In this paper,the Monte Carlo method is applied to analyze the big data of run-out value to predict the failure.The X peak-peak values of the run-out of the lower guide bearing of a hydropower plant are taken as the investigation object.In the treatment of 453,601 sets of the run-out value,three typical operating conditions are selected to study.The normalized weighted average is used as the statistic,and the Monte Carlo method is adopted to analyze it.It is found that the statistic obeys normal distribution.By monitoring the real-time value of the statistic,the working status of the hydro-generator is evaluated qualitatively according to the normal distribution 3σ criterion,and evaluated quantitatively according to the calculated probability P-value.Failure can be predicted by using these evaluations.

关键词

大数据/水电厂/机器学习/蒙特卡洛方法/故障预测/摆度

Key words

big data/hydropower plant/machine learning/Monte Carlo method/failure prediction/run-out value

分类

信息技术与安全科学

引用本文复制引用

段炼达,刘晓波..基于摆度大数据的水轮发电机故障预测方法研究[J].中国水利水电科学研究院学报,2017,15(6):439-443,5.

中国水利水电科学研究院学报

OA北大核心CSTPCD

2097-096X

访问量5
|
下载量0
段落导航相关论文