| 注册
首页|期刊导航|高技术通讯|基于统计特征矢量符号值和聚类经验模态分解的短时电能质量扰动信号分析

基于统计特征矢量符号值和聚类经验模态分解的短时电能质量扰动信号分析

欧阳静 张立彬 潘国兵 徐红伟 陈金鑫

高技术通讯2017,Vol.27Issue(11):929-937,9.
高技术通讯2017,Vol.27Issue(11):929-937,9.DOI:10.3772/j.issn.1002-0470.2017.11-12.007

基于统计特征矢量符号值和聚类经验模态分解的短时电能质量扰动信号分析

Analysis of short time power quality disturbances based on statistic feature vector symbolic and ensemble empirical mode decomposition

欧阳静 1张立彬 1潘国兵 1徐红伟 1陈金鑫1

作者信息

  • 1. 浙江工业大学特种装备制造与先进加工技术教育部/浙江省重点实验室 杭州市310014
  • 折叠

摘要

Abstract

Aiming at the deficiency of the Hibert-Huang transform(HHT)method for power quality disturbance analysis, a new method for analysis of short time power quality disturbances based on the combination of statistic feaure vector symbolic(SFVS)and ensemble empirical mode decomposition(EEMD)is proposed.This method uses the SFVS algorithm for boundary detection,once the instants of transition are found,the short time power quality disturbance signal can be divided into certain segments of stationary signals and the EEMD can be applied to each segment to decompose it to effectively restrain the mode mixing.The testing results show that the proposed method can accu-rately detect the time of transition and analyse various components in the short time power quality disturbance sig -nal.

关键词

短时电能质量扰动/暂态分析/统计特征矢量符号化(SFVS)/聚类经验模态分解(EEMD)/模态混叠

Key words

short time power quality disturbances/transient analysis/statistic feature vector symbolic (SFVS)/ensemble empirical mode decomposition(EEMD)/mode mixing

引用本文复制引用

欧阳静,张立彬,潘国兵,徐红伟,陈金鑫..基于统计特征矢量符号值和聚类经验模态分解的短时电能质量扰动信号分析[J].高技术通讯,2017,27(11):929-937,9.

基金项目

863计划(2013AA050405),国家国际科技合作专项(2014DFE60020),浙江省自然科学基金(LY15E070004),和浙江省科学技术厅协同创新(2016F50010)资助项目. (2013AA050405)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量4
|
下载量0
段落导航相关论文