| 注册
首页|期刊导航|计算机工程与科学|PFPonCanTree:一种基于MapReduce的并行频繁模式增量挖掘算法

PFPonCanTree:一种基于MapReduce的并行频繁模式增量挖掘算法

肖文 胡娟 周晓峰

计算机工程与科学2018,Vol.40Issue(1):15-23,9.
计算机工程与科学2018,Vol.40Issue(1):15-23,9.DOI:10.3969/j.issn.1007-130X.2018.01.003

PFPonCanTree:一种基于MapReduce的并行频繁模式增量挖掘算法

PFPonCanTree: A parallel frequent patterns incremental mining algorithm based on MapReduce

肖文 1胡娟 1周晓峰1

作者信息

  • 1. 河海大学文天学院,安徽马鞍山243000
  • 折叠

摘要

Abstract

Frequent pattern mining is one of the most important data mining tasks.Traditional frequent pattern mining algorithmsare executed in a "batch" mode,that is,all the data are mined in one time,so they cannotmeet the needs of the ever-growing bigdata mining.MapReduce is a popular parallel computing modeland has been widely used in the field of parallel data mining.In this paper,we migrate the traditional frequent pattern incremental mining algorithm CanTree to the MapReduce computing model,achieving a parallel frequent pattern incremental miningalgorithm.The experimental results show that the proposed algorithm achievesbetterload balancing and improvesthe execution efficiency significantly.

关键词

数据挖掘/频繁模式挖掘/增量挖掘/MapReduce/Hadoop/PFP

Key words

data mining/frequent pattern mining/incremental mining/MapReduce/Hadoop/PFP

分类

信息技术与安全科学

引用本文复制引用

肖文,胡娟,周晓峰..PFPonCanTree:一种基于MapReduce的并行频繁模式增量挖掘算法[J].计算机工程与科学,2018,40(1):15-23,9.

基金项目

安徽省高校自然科学研究项目(KJ2016A623) (KJ2016A623)

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文