| 注册
首页|期刊导航|电讯技术|基于区域卷积神经网络和光流法的目标跟踪

基于区域卷积神经网络和光流法的目标跟踪

吴进 董国豪 李乔深

电讯技术2018,Vol.58Issue(1):6-12,7.
电讯技术2018,Vol.58Issue(1):6-12,7.DOI:10.3969/j.issn.1001-893x.2018.01.002

基于区域卷积神经网络和光流法的目标跟踪

Object Tracking Based on Region Convolution Neural Network and Optical Flow Method

吴进 1董国豪 1李乔深1

作者信息

  • 1. 西安邮电大学电子工程学院,西安710121
  • 折叠

摘要

Abstract

In order to solve the problem of slow speed of online target tracking based on deep learning,a target tracking algorithm based on regional convolutional network and optical flow method is designed and implemented.Based on the T-1 frame tracking results,the optical flow method is used to calculate the tracking target's motion vector to calculate the primary selection box of the tracking target on the T frame,and the primary selection box is used as the input of the regional convolutional network to calculate accurate tracking of the target results.Through experimental analysis and comparison,the algorithm has good robustness to the target velocity and deformation,and the tracking speed can reach 50 frame/s.Compared with the on-line tracking algorithm,the proposed algorithm improves the speed of target tracking algorithm greatly while satisfying the high tracking accuracy.

关键词

目标跟踪/深度学习/卷积神经网络/光流法

Key words

object tracking/deep learning/convolutional neural network/optical flow

分类

信息技术与安全科学

引用本文复制引用

吴进,董国豪,李乔深..基于区域卷积神经网络和光流法的目标跟踪[J].电讯技术,2018,58(1):6-12,7.

基金项目

国家自然科学基金资助项目(61634004,61602377) (61634004,61602377)

陕西省科技统筹创新工程项目(2016KTZDGY02-04-02) (2016KTZDGY02-04-02)

陕西省重点研发计划(2017GY-060) (2017GY-060)

电讯技术

OA北大核心CSTPCD

1001-893X

访问量0
|
下载量0
段落导航相关论文