| 注册
首页|期刊导航|电力系统自动化|基于LMD和模型匹配的家电负荷识别算法

基于LMD和模型匹配的家电负荷识别算法

祁兵 刘利亚 王丽丽

电力系统自动化2017,Vol.41Issue(22):74-80,7.
电力系统自动化2017,Vol.41Issue(22):74-80,7.DOI:10.7500/AEPS20170212001

基于LMD和模型匹配的家电负荷识别算法

Identification Algorithm for Appliance Load Based on LMD and Model Matching

祁兵 1刘利亚 1王丽丽2

作者信息

  • 1. 华北电力大学电气与电子工程学院,北京市102206
  • 2. 国网物资有限公司,北京市100120
  • 折叠

摘要

Abstract

Appliance load identification is an important part of intelligent power consumption.Traditional intrusion load monitoring has the drawbacks of high cost,complex installation and maintenance,hence the need of a load identification algorithm based on non-intrusive load monitoring.According to the principles and method of system identification,a load identification algorithm based on local mean decomposition (LMD) and model matching is proposed,which is characterized by steady state current and voltage.In order to construct the linear and nonlinear model libraries,the steady-state data of each load in the power network is collected in advance.Then,the LMD algorithm is used to decompose the mixed signals into electricity consumption data of single load.By pre-screening,these separated data are categorized into the model library that they belong to,and finally these loads are recognized according to the model matching principles.Simulation results show that the proposed algorithm can accurately identify the operating status of each load and has high computational efficiency.Furthermore,it can effectively deal with the situation when a new load joins the power network.

关键词

负荷识别/模型库/局部平均分解/模型匹配

Key words

load identification/model library/local mean decomposition (LMD)/model matching

引用本文复制引用

祁兵,刘利亚,王丽丽..基于LMD和模型匹配的家电负荷识别算法[J].电力系统自动化,2017,41(22):74-80,7.

基金项目

This work is supported by Fundamental Research Funds for the Central Universities (No.2016MS13).中央高校基本科研业务费专项资金资助项目(2016MS13). (No.2016MS13)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文