| 注册
首页|期刊导航|计算机工程与应用|中心约束的跨源学习可能性C均值聚类算法

中心约束的跨源学习可能性C均值聚类算法

夏洋洋 刘渊 黄亚东

计算机工程与应用2018,Vol.54Issue(5):72-78,7.
计算机工程与应用2018,Vol.54Issue(5):72-78,7.DOI:10.3778/j.issn.1002-8331.1610-0055

中心约束的跨源学习可能性C均值聚类算法

Central-constraints possibilistic C-means algorithms based on source domain

夏洋洋 1刘渊 1黄亚东1

作者信息

  • 1. 江南大学 数字媒体学院,江苏 无锡214122
  • 折叠

摘要

Abstract

Compared with Fuzzy C-Means(FCM),Possibilistic C-Means clustering algorithm(PCM)can deal with the data with noise and exception point better,but when dealing with the data set with strong viscosity,the clustering center of PCM algorithm will lead to the direct failure of clustering algorithm.To solve the above issue,this paper devises central-constraints and transfer based on source domain criterions,and applies these to PCM.It proposes Central-Constraints Possibilistic C-Means algorithms based on the Source Domain(CCSD_PCM for short),which can achieve better clustering effect.Improved algorithm can use the cross-domain knowledge to support the clustering,so as to guarantee the clustering performance of the algorithm.Through the simulation data sets and real data sets,it verifies the above-mentioned advantages of the algorithm.

关键词

迁移学习/类中心约束/可能性C均值算法

Key words

transfer learning/central-constraints/possibilistic C-means algorithms

分类

信息技术与安全科学

引用本文复制引用

夏洋洋,刘渊,黄亚东..中心约束的跨源学习可能性C均值聚类算法[J].计算机工程与应用,2018,54(5):72-78,7.

基金项目

江苏省自然科学基金(No.BK20151131) (No.BK20151131)

中央高校基本科研业务费专项资金(No.JUSPR51614A). (No.JUSPR51614A)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文