| 注册
首页|期刊导航|计算机工程与应用|基于信息熵的RVM-AdaBoost组合分类器

基于信息熵的RVM-AdaBoost组合分类器

翟夕阳 王晓丹 李睿 贾琪

计算机工程与应用2018,Vol.54Issue(5):138-143,6.
计算机工程与应用2018,Vol.54Issue(5):138-143,6.DOI:10.3778/j.issn.1002-8331.1610-0104

基于信息熵的RVM-AdaBoost组合分类器

Information entropy-based RVM-AdaBoost ensemble classifier

翟夕阳 1王晓丹 1李睿 1贾琪1

作者信息

  • 1. 空军工程大学 防空反导学院,西安710051
  • 折叠

摘要

Abstract

In the light of the problem that AdaBoost works poorly with RVM, a new classifier which is composed of RVM and AdaBoost is proposed.The information entropy of the samples is defined by the output posterior probability of RVM. The higher is the information entropy, the samples are more easily mistaken. Use adaptive information entropy threshold to filter data and use ensemble classifier to classify the samples which are filtered.Regarding the few samples which are not filtered and have false classification results as noise data improves classifier's stability and avoids classifier's degradation. Experimental results based on UCI data sets show that the new classifier effectively improves the perfor-mance of RVM and has better performance on accuracy,efficiency and stability compared with AdaBoost-RVM and AdaBoost-ARVM classifiers.

关键词

相关向量机/AdaBoost算法/信息熵/集成学习

Key words

Relevance Vector Machine(RVM)/AdaBoost/information entropy/ensemble learning

分类

信息技术与安全科学

引用本文复制引用

翟夕阳,王晓丹,李睿,贾琪..基于信息熵的RVM-AdaBoost组合分类器[J].计算机工程与应用,2018,54(5):138-143,6.

基金项目

国家自然科学基金(No.60975026,No.61273275). (No.60975026,No.61273275)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文