| 注册
首页|期刊导航|计算机工程与应用|多目标灰狼优化算法的改进策略研究

多目标灰狼优化算法的改进策略研究

崔明朗 杜海文 魏政磊 李聪

计算机工程与应用2018,Vol.54Issue(5):156-164,9.
计算机工程与应用2018,Vol.54Issue(5):156-164,9.DOI:10.3778/j.issn.1002-8331.1707-0211

多目标灰狼优化算法的改进策略研究

Research on improved strategy for multi-objective grey wolf optimizer

崔明朗 1杜海文 1魏政磊 1李聪1

作者信息

  • 1. 空军工程大学 航空航天工程学院,西安710038
  • 折叠

摘要

Abstract

For the problems of easily falling into local optimum and poor stability of the Multi-Objective Grey Wolf Optimizer(MOGWO),two improvement strategies are put forward by studying the movement of grey wolf individual at algorithm optimization process:One is adding the"survey process",the grey wolf individual is endowed with the ability to explore independently and both the efficiency of algorithm and the ability of jumping out the local optimum solution are improved;the other is improving the adjustment strategy of control parameter.The power function is used to replace the linear function to improve the stability of the algorithm.Based on two universal evaluation methods of multi-objective optimization(Generational Distance and Inverted Generational Distance),6 different test functions and 3 different algo-rithms(the original algorithm,the improved algorithm and the Multi-Objective Particle Swarm Optimization algorithm) are compared with the repeat experiments. The experimental results show the effectiveness and feasibility of the AS-MOGWO from efficiency,ability and stability.

关键词

多目标灰狼算法/观察策略/控制参数/Pareto边界/多目标优化评价方法

Key words

Multi-Objective Grey Wolf Optimizer(MOGWO)/survey strategy/control parameter/pareto optimal front/evaluation method of multi-objective optimization

分类

信息技术与安全科学

引用本文复制引用

崔明朗,杜海文,魏政磊,李聪..多目标灰狼优化算法的改进策略研究[J].计算机工程与应用,2018,54(5):156-164,9.

基金项目

国家自然科学基金(No.61601505) (No.61601505)

航空科学基金(No.20155196022) (No.20155196022)

陕西省自然科学基金(No.2016JQ6050). (No.2016JQ6050)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文