| 注册
首页|期刊导航|可再生能源|基于KPCA与混合蛙跳算法的并网光伏电站发电量预测模型研究

基于KPCA与混合蛙跳算法的并网光伏电站发电量预测模型研究

朱芳

可再生能源2018,Vol.36Issue(2):236-240,5.
可再生能源2018,Vol.36Issue(2):236-240,5.

基于KPCA与混合蛙跳算法的并网光伏电站发电量预测模型研究

Study on PV generation power forecasting method based on KPCA and shuffled frog leaping algorithm

朱芳1

作者信息

  • 1. 无锡科技职业学院,江苏 无锡214028
  • 折叠

摘要

Abstract

A photovoltaic power integrated forecasting method based on hybrid leapfrog algorithm and kernel principal component analysis is Present. The date, time, weather forecast in the clouds and temperature history as input, the photovoltaic power generation system history data and historical weather data as the foundation, and kernel principal component analysis is used to reduce the dimension of input to extract the constituent of primary input,and constitute a historical database, together with the photovoltaic power output to the historical data for training. The comprehensive prediction model is set up, and the relative root mean square error of photovoltaic power is used to evaluate the model. Results show that the proposed method is fast and model prediction accuracy is higher.

关键词

发电量预测/核主成分分析/混合蛙跳算法/预测模型

Key words

photovoltaic power prediction/kernel principal component analysis/hybrid leapfrog algorithm/predictive model

分类

能源科技

引用本文复制引用

朱芳..基于KPCA与混合蛙跳算法的并网光伏电站发电量预测模型研究[J].可再生能源,2018,36(2):236-240,5.

基金项目

国家自然科学基金项目(5126308) (5126308)

湖北省教育厅创新基金项目(201519632). (201519632)

可再生能源

OA北大核心CSTPCD

1671-5292

访问量0
|
下载量0
段落导航相关论文