| 注册
首页|期刊导航|中国机械工程|基于工况识别与多元非线性回归优化的能量管理策略

基于工况识别与多元非线性回归优化的能量管理策略

孙蕾 林歆悠 林国发

中国机械工程2017,Vol.28Issue(22):2695-2700,6.
中国机械工程2017,Vol.28Issue(22):2695-2700,6.DOI:10.3969/j.issn.1004-132X.2017.22.008

基于工况识别与多元非线性回归优化的能量管理策略

Energy Management Strategy Based on Type Recognition and Multivariate Nonlinear Regression Optimization

孙蕾 1林歆悠 2林国发3

作者信息

  • 1. 华侨大学机电及自动化学院,厦门,361021
  • 2. 福州大学机械工程及自动化学院,福州,350002
  • 3. 上汽集团技术中心,上海,201804
  • 折叠

摘要

Abstract

The type recognition algorithm of driving conditions was studied based on LVQ neural network,to provide the basis for the intelligent management strategy of hybrid electric vehicles.First,11 characteristic parameters were extracted from 4 typical road type conditions and the 3 kinds of standard cycle conditions to train the data.Then,the LVQ neural network type recognition algorithm of driving condition was developed.Based on this,a hybrid power system was as an example,which combined with multiple nonlinear regression analysis to develop the corresponding control strategy.Finally,LVQ neural network type recognition simulation model of driving condition was established based on the Simulink simulation platform,type recognition tests were carried on under the Chinese city typical cycle road conditions,standard condition recognition tests were carried on by constructing UDDS+NYCC+UDDS driving conditions.The results show that the established LVQ neural network may accurately identify the type of driving condition types and the control effectiveness of the energy management strategy is improved effectively.

关键词

学习向量化神经网络/工况识别/循环工况/能量管理

Key words

learning vector quantization(LVQ) neural network/type recognition/driving cycle type/energy management

分类

交通工程

引用本文复制引用

孙蕾,林歆悠,林国发..基于工况识别与多元非线性回归优化的能量管理策略[J].中国机械工程,2017,28(22):2695-2700,6.

基金项目

国家自然科学基金资助项目(51505086) (51505086)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文