电测与仪表2018,Vol.55Issue(4):61-69,9.
直流微电网二次调压系统设计
Design of secondary voltage regulation system of DC micro-grid
摘要
Abstract
The bus voltage stability is the key to the normal operation of DC micro-grid.In a DC microgrid adopting droop control,zero-error regulation of DC bus voltage can't be achieved.When adopting double closed loop control,micro-sources cant adjust their output power according to their own capacity flexibly,thus leading to the low efficiency of the microgrid.To deal with this problem,a secondary voltage regulation system was designed through integrating these control methods above.When the DC bus voltage deviates from the rated value,the primary voltage regulation is conducted by the droop-control system firstly.The DC bus voltage is regulated to the stable working range.Then,the secondary voltage regulation is conducted by the vanadium redox battery (VRB) storage system,with the cooperation of the lithium battery in island mode or the grid-connecting converter in grid-connected mode.The DC bus voltage is regulated to the rated value.If a large power fluctuation occurs in this time,the DC micro-grid returns to primary voltage regulation again.The processes above are repeated.The primary and secondary voltage regulations cooperate with each other,switch flexibly and achieve the efficient regulation of the bus voltage.The proposed voltage regulation system realizes the zero-error regulation of DC bus voltage,while retaining the high efficiency and flexibility advantages of droop control.Thus,the efficiency of micro-grid is improved.The validity and feasibility of the proposed voltage regulation system were verified by simulations and experiments.关键词
直流微电网/母线电压调节/下垂控制/双闭环控制Key words
DC micro-grid/bus voltage regulation/droop control/double closed loop control分类
信息技术与安全科学引用本文复制引用
米芝昌,任春光,韩肖清,王鹏,张宋杰..直流微电网二次调压系统设计[J].电测与仪表,2018,55(4):61-69,9.基金项目
国家自然科学基金联合基金项目(U1610121) (U1610121)
山西省煤基重点科技攻关项目(MD2014-06) (MD2014-06)