| 注册
首页|期刊导航|电力系统自动化|采用马尔可夫链-多场景技术的交直流主动配电网优化调度

采用马尔可夫链-多场景技术的交直流主动配电网优化调度

董雷 孟天骄 陈乃仕 李烨 蒲天骄

电力系统自动化2018,Vol.42Issue(5):147-153,7.
电力系统自动化2018,Vol.42Issue(5):147-153,7.DOI:10.7500/AEPS20170616002

采用马尔可夫链-多场景技术的交直流主动配电网优化调度

Optimized Scheduling of AC/DC Hybrid Active Distribution Network Using Markov Chains and Multiple Scenarios Technique

董雷 1孟天骄 1陈乃仕 2李烨 2蒲天骄2

作者信息

  • 1. 华北电力大学电气与电子工程学院,北京市102206
  • 2. 中国电力科学研究院有限公司,北京市100192
  • 折叠

摘要

Abstract

Aimed at the AC/DC hybrid active distribution network(ADN)containing voltage sourced converters(VSCs),a scenario-based stochastic optimal scheduling model is built.Considering the temporal correlation of the errors changes,a multiple scenarios technique combined with Markov chain is used to imitate the intermittency and volatility of the wind power, photovoltaic power and uncertain load.A large number of scenarios are clustered by fuzzy C-means algorithm to gain representative scenarios.A multi-time-scale coordinated scheduling strategy is proposed and the specific strategies are as follows:In the long-time scale,the outputs of the connecting line and flexible DC devices are optimized with the goal of minimizing the total cost of the power grid,while in the short-time scale,the output of adjustable resources is corrected on the basis of long-time scale results to minimize the difference.The results verify that multiple scenarios technique with the Markov chain can describe the uncertainty of original problem effectively and correct the prediction deviation which increases over time. It is also beneficial to reducing the pressure of short-time scale dispatch.In addition,this paper illustrates that the model is contributed to deal with the uncertain fluctuations and improve the consumptive ability of intermittent resource.

关键词

多场景技术/马尔可夫链/模糊C均值聚类/多时间尺度协调调度

Key words

multiple scenarios technique/Markov chain/fuzzy C-means clustering/multi-time-scale coordinated scheduling

引用本文复制引用

董雷,孟天骄,陈乃仕,李烨,蒲天骄..采用马尔可夫链-多场景技术的交直流主动配电网优化调度[J].电力系统自动化,2018,42(5):147-153,7.

基金项目

国家重点研发计划资助项目(2017YFB0903300) (2017YFB0903300)

北京市自然科学基金重点资助项目(3161002).This work is supported by National Key R&D Program of China(No.2017YFB0903300)and Beijing Natural Science Foundation(No.3161002). (3161002)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文