| 注册
首页|期刊导航|广东工业大学学报|卷积网络深度学习算法与实例

卷积网络深度学习算法与实例

陈旭 张军 陈文伟 李硕豪

广东工业大学学报2017,Vol.34Issue(6):20-26,7.
广东工业大学学报2017,Vol.34Issue(6):20-26,7.DOI:10.12052/gdutxb.170093

卷积网络深度学习算法与实例

Convolutional Neural Network Algorithm and Case

陈旭 1张军 1陈文伟 1李硕豪1

作者信息

  • 1. 国防科技大学信息系统与管理学院,湖南长沙410073
  • 折叠

摘要

Abstract

Convolutional neural network (CNN) is a deep learning model with strong expression and classification ability,and is currently widely used,but there are a variety of specific algorithms.In this paper,the realization of deep learning algorithm based on convolutional neural network CNN,including the function of convolution kernel,the role of pooling,the selection of activation function and the training process are discussed.And one example is explained,which facilitates the mastery of CNN.Finally,the future research direction of convolution neural network is summarized and forecasted.

关键词

卷积神经网络/反向传播/深度学习/卷积层/池化层

Key words

convolutional neural network/back propagation/deep learning/convolutional layer/pooling layer

分类

信息技术与安全科学

引用本文复制引用

陈旭,张军,陈文伟,李硕豪..卷积网络深度学习算法与实例[J].广东工业大学学报,2017,34(6):20-26,7.

基金项目

国家自然科学基金资助项目(6117019) (6117019)

广东工业大学学报

1007-7162

访问量0
|
下载量0
段落导航相关论文